iBLD42NR Series

Integrated Closed-loop Brushless Motor Instruction Manual

Versions: V1.00

Contents

1. Product introduction	3
1.1. Introduction	3
1.2. Characteristics	3
1.3. Application Fields	4
2. Electrical, Mechanical and Environmental Indicators	4
2.1. Electrical index	4
2.2. Use environment and parameters	4
2.3. Mechanical structure dimension diagram	5
2.4. Heat dissipation precautions	6
3. Driver interface definition and wiring introduction	6
3.1. Interface Description	6
3.2. Interface circuit	8
3.3. Speed regulation mode control	8
3.4. LED Status Indication	9
3.5. Communication wiring diagram	10
3.6. Communication Protocol	10
3.7. Wiring requirements	12
4. Product warranty clause of FULLING MOTOR	13
5. Version Description	14

Instruction Manual

For iBLD42NR Series Integrated Closed-loop Brushless Motor

1. Product introduction

1.1. Introduction

The iBLD42NR series integrated closed-loop brushless motor is a high-performance closed-loop motor independently developed by CHANGZHOU FULLING MOTOR CO., LTD. It adopts a 32-bit dedicated motor control chip, with high integration, small size, and complete protection measures. This motor adopts a new PWM control technology, which makes the brushless motor operate with advantages such as high rotation, low vibration, low noise, and good smoothness.

1.2. Characteristics

- Adopting a 32-bit motor control dedicated chip
- Voltage level 12VDC~48VDC, supporting wide voltage input
- Support multiple speed regulation modes (PWM, analog, communication)
- Equipped with control functions such as start stop, forward and reverse rotation, braking, etc
- RS485 communication, supporting Modbus communication protocol
- High precision speed and current dual closed-loop control
- Support software settings for control signal limits, PID, acceleration and deceleration, current values, and other parameters
- It has protection functions such as overvoltage, undervoltage, overcurrent, overheating, and rotor blockage
- Ultra high cost-effectiveness, cost-effective and efficient
- Acceptable customization

1.3. Application Fields

Widely used in various small and medium-sized automation equipment and instruments, such as electronic processing equipment, 3C non-standard automation equipment, screw locking machines, wire stripping machines, winding machines, terminal machines, laser machines, marking machines, spray painting machines, small and medium-sized carving machines, automatic grabbing equipment, specialized CNC machine tools, packaging equipment and robots.

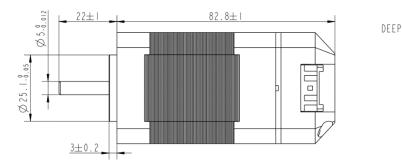
2. Electrical, Mechanical and Environmental Indicators

2.1. Electrical index

	Index					
Parameters	Minimum	Typical	Maximum	Unit		
	value	value	value	Oilit		
Power supply voltage	10	24	50	Vdc		
Continuous output current	0	3.6	5.4	A		
Logic input voltage	0	5	24	Vdc		
Analog input voltage	0	-	5	Vdc		
Output logic voltage	0	-	5	Vdc		
Output logic current	0	50	90	A		
(Charging current)	0	50	80	mA		
Output sensor voltage	4.5	5	5.5	Vdc		
Output sensor current	0		30	mA		
PWM pulse frequency	1	-	20	kHz		

2.2. Use environment and parameters

Parameters	Index
------------	-------



Instruction manual for iBLD42NR series integrated closed-loop brushless motor

Temperature	-20°C ∼ 50°C				
Humidity	40 ~ 90%RH (No condensation)				
Vibration	< 55Hz / 0.15mm				
	Avoid approaching other heat sources, avoid dust, oil mist,				
On site	corrosive gases, places with high humidity and strong				
environment	vibrations, and prohibit the presence of combustible gases and				
	conductive dust				
Storage	20°C 65°C				
temperature	-20°C ∼ 65°C				
Type of	Notional applies on formed air applies				
cooling	Natural cooling or forced air cooling				

2.3. Mechanical structure dimension diagram

2.3.1 Mechanical dimension diagram

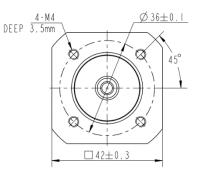


FIG. 1 Mechanical dimensions

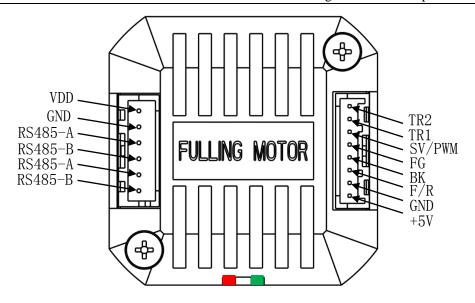


FIG. 2 Terminal definition diagram

2.4. Heat dissipation precautions

The reliable working temperature of an integrated closed-loop brushless motor is usually within 80 °C. When installing, please use an upright side installation to create strong air convection on the surface of the heat sink. If necessary, install a fan near the driver to forcibly dissipate heat, ensuring that the driver operates within a reliable working temperature range.

3. Driver interface definition and wiring introduction

3.1. Interface Description

3.1.1 Control Port (B08B-PASK-1(LF)(SN) 8-bit pin)

Pin number	signal	function	Explanation
1	TR2 Terminal resistor terminal		TR2\ TR1 Short circuiting will connect to the terminal resistor
2	TR1	Terminal resistor	TR2\TR1 Short circuiting will connect to the terminal resistor
3	SV/PWM Speed regulation		Analog speed control: 0.5V~4.5V, PWM speed regulation: Duty cycle

Instruction manual for iBLD42NR series integrated closed-loop brushless motor

		signal (Can be	polarity configurable		
		configured by	0~5% Full speed 5~95% Linear speed regulation		
		communication)	95~100% cease		
4	PG	Speed signal	TTL-5V level, 1 pulse /1 Antipolar / rotate		
			Invalid when suspended or connected		
~	DIZ	D 1 . 1	to a high level (1.7V~24V)		
5	5 BK Brake		Connected to low-level brake effective		
			(0V~0.8V)		
			CW\CCW High and low level polarity		
	F /P	5	can be configured by software		
6	F/R	Directional signal	High level (1.7V~24V)		
			Low level (0V~0.8V)		
7	CND	Sensor power	Sensor power supply ground, shared		
/	7 GND supply C		with main power supply ground		
0	51 1	Sensor +5V power	Sensor +5V power supply, Output		
8	+5V	supply	current <=30mA		

3.1.2 Power Port (B06B-XASK-1(LF)(SN) 6-bit pin)

Pin number	Signal	Function Description			
1	VDD	Power input positive terminal, input			
		voltage 10V~50Vdc			
2	GND	Power input negative terminal			
3	A	Communication RS485-A			
4	В	Communication RS485-B			
5	A	Communication RS485-A			
6	В	Communication RS485-B			

3.2. Interface circuit

Input signal of iBLD42NR.

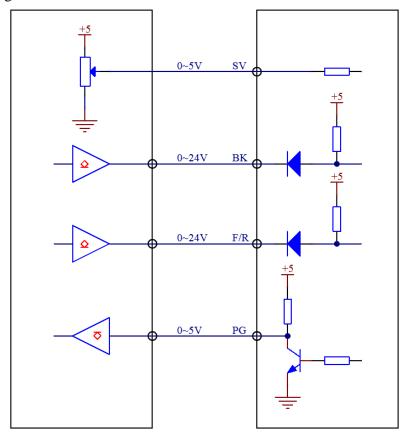


FIG. 3 Wiring diagram of control signal

3.3. Speed regulation mode control

IBLD42NR provides the following three speed regulation modes that users can choose from (configured through the upper computer):

External analog speed regulation: By using Fulling's upper computer software, set the control mode (0x0002) to 0, and speed regulation can be achieved through external analog output or potentiometer (recommended potentiometer 5K~100K).

External PWM speed regulation: By using Fulling's upper computer software, the control mode (0x0002) is set to 1 or 2. A pulse width digital signal (PWM) with an amplitude of 5V and a frequency of 1KHz-20KHz can be applied between SV/PWM and GND for speed regulation. The motor speed is linearly adjusted by its duty cycle.

Communication speed regulation: By using Fulling's upper computer software, set the control mode (0x0002) to 3, set the target speed (0x0004), and set the

communication start stop (0x0003) to 1.

3.4. LED Status Indication

The green LED is the power indicator light. When the motor is powered on, the green LED remains on; Cut off the power and the green LED will turn off.

The red LED is the fault indicator light. When a fault occurs, the red indicator light flashes for a period of 600ms (Duty 50%). After flashing, the light goes off for 1 second and cycles back and forth; When the fault is cleared by the user, the red LED remains off. The number of red LED flashes represents different fault information, as shown in the table below.

Serial number	Flashing frequency	Red indicator light flashing waveform	Fault Description
1	0	Red light goes out	No faults
2	1	ΠΠ	Overcurrent fault
3	2	Π	Undervoltage fault
4	3	Π	Overvoltage fault
5	4	n	Over temperature fault
6	5	n	HALL malfunction
7	6	n	Motor blocking protection

3.5. Communication wiring diagram

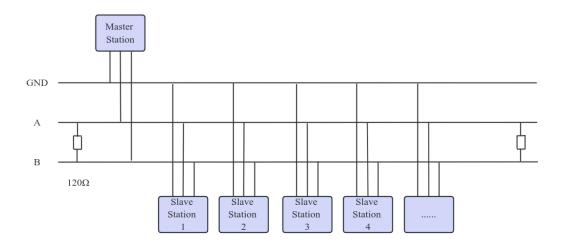


FIG. 4 RS485 Communication Wiring Diagram

3.6. Communication Protocol

The communication mode adopts the standard Modbus protocol and uses RS485 dual wire serial link communication. The serial port baud rate is 115200, with one stop bit and no parity check.

Serial number	Modbus Protocol address	Parameter name	Access	Default value	Value range	Value Definition
1	1	Software version	R	-	-	-
2	2	Control mode	R/W	0	0-3	0-Analog voltage 1-Pwm Low duty cycle 2-Pwm High duty cycle 3- Communication
3	3	Communication start stop	R/W	0	0-1	0- Communication stopped 1- Communication start (Only valid in communication mode)
4	4	Target speed (rpm)	R/W	0	-6000- 6000	

Instruction manual for iBLD42NR series integrated closed-loop brushless motor

				1		-loop brusiliess illotor
		Acceleration				
5	5	time	R/W	1000	0-65535	
		(milliseconds)				
		Deceleration				
6	6	time	R/W	1000	0-65535	
		(milliseconds)				
		maximum				
7	7	current (0.01A)	R/W	1000	0-65535	
		SV Starting				
8	8	voltage	R/W	50	0-500	
o o		(0.01V)	10 11	30	0 300	
		Minimum				
9	9		R/W	50	0-1000	
9	9	rotative speed	K/ W	30	0-1000	
		(rpm)				
10	10	Maximum SV	R/W	450	0-500	
		voltage (0.01V)				
		Maximum speed			1000-	
11	11	of revolution	R/W	4000	20000	
		(rpm)				
		Overvoltage				
12	12	protection	R/W	3000	1000-	
12	12	threshold	10 11	3000	6000	
		(0.01V)				
		Undervoltage				
12	13	protection	R/W	1200	500-3000	
13		threshold		1200		
		(0.01V)				
		Over and under				
4.4		pressure	D 777	200	7 0 4000	
14	14	hysteresis area	R/W	200	50-1000	
		(0.01V)				
		Overvoltage and				
		undervoltage				
15	15	time threshold	R/W	3	0-1000	
		(second)				
		Over temperature				
16	16	point	R/W	11000	5000-	
10	10	(0.01 Celsius)	10 11	11000	18000	
		Over temperature			100	
17	17	hysteresis	R/W	1000	100- 5000	
		threshold				
		(0.01 Celsius)				
18	18	Over temperature	R/W	10	1-6000	

Instruction manual for iBLD42NR series integrated closed-loop brushless motor

				I		loop brusiness motor				
		hysteresis time								
		(second)								
		locked-rotor								
19	19	current	R/W	400	300-600					
		(0.01A)								
20	20	Locked rotor	R/W	3	0-10					
20	20	time (second)	IX/ VV	3	0-10					
21	21	Directional	D/W	0	0.1	0-low level CW				
21	21	polarity selection	R/W	0	0-1	1-high level CW				
22	22	Speed loop Kp	R/W	30000	0-65535					
23	23	Speed loop Ki	R/W	2000	0-65535					
24	24	Current loop Kp	R/W	15000	0-65535					
25	25	Current loop Ki	R/W	4096	0-65535					
						0- Reading power				
						outage parameters				
26	26	Flash Parameter control	R/W	0	0-2	1- Save parameters to				
26	26			0		EEPROM				
							2- Restore factory			
										settings
27	32	Slave address	R/W	1	1-250					
28	48	Actual speed	R	-	0-65535	-				
29	49	Real time voltage	R	-	0-65535	-				
30	50	Real time current	R	-	0-65535	-				
31	51	Fault status	R	-	0-65535	-				
32	52	Real time	R		0.65525					
32	32	temperature	K	_	0-65535	-				
22	52	Civan smaa 4	D		-6000-					
33	53	Given speed	R	-	6000					
34	54	Phase current	R	-	0-65535					

3.7. Wiring requirements

1) To prevent interference with the driver, it is recommended to use shielded cables for control signals, and the shielding layer should be short circuited to the ground wire. Unless otherwise specified, the shielding wire of the control signal cable should be grounded at one end: the upper computer end of the shielding wire should be grounded, and the driver end of the shielding wire should be suspended. Grounding is only allowed at the same point within the same machine. If it is not a true grounding wire, it may cause serious interference, and the shielding layer is

not connected at this time.

- 2) If a power supply supplies multiple drives, parallel connection should be adopted at the power supply, and chain connection from one to another is not allowed.
- 3) It is strictly prohibited to plug and unplug the driver terminals with electricity. When a live motor stops, there is still a large current flowing through the coil, and plugging and unplugging the terminals will cause a huge instantaneous induced electric potential that will burn out the driver.
- 4) It is strictly prohibited to solder the wire head and connect it to the wiring terminal, otherwise it may overheat and damage the terminal due to increased contact resistance.
- 5) The wiring terminal should not be exposed outside the terminal to prevent accidental short circuit and damage to the driver.

4. Product warranty clause of FULLING MOTOR

1) One year warranty

FULLING provides a one-year warranty against defects in the raw materials and workmanship of its products from the date of shipment. During the warranty period, FULLING provides free repair service for defective products.

2) Not covered by warranty

- A. Inappropriate wiring, such as reversed polarity of the power supply and live plugging and unplugging
 - B. Unauthorized modification of internal components
 - C. Use beyond electrical and environmental requirements
 - D. Poor environmental heat dissipation

3) Repair process

If the product needs to be repaired, the following process will be followed:

(1) Before shipping, please call the customer service personnel of FULLING to obtain a repair permit number;

- (2) Please send a written explanation along with the goods, explaining the phenomenon of the faulty drive being repaired; The voltage, current, and usage environment at the time of the malfunction; The name, phone number, and mailing address of the contact person.
- (3) Prepaid postage to CHANGZHOU FULLING MOTOR Co., Ltd., No. 69 Kunlun Road, Xinbei District, Changzhou City, Jiangsu Province Postal code: 213032.

4) Warranty Limitations

- A. The warranty scope of FULLING's products is limited to the components and processes of the products (i.e. consistency)
- B、FULLING does not guarantee that its products will be suitable for the specific use of customers, as the suitability is also related to the technical specifications, usage conditions, and environment of the use.

5) Maintenance requirements

When repairing, please truthfully fill out the "Repair Report" (this form can be downloaded from www.fullingmotor.com) for maintenance analysis. Mailing address: CHANGZHOU FULLING MOTOR Co., Ltd., No. 69 Kunlun Road, Xinbei District, Changzhou City, Jiangsu Province. Postal code: 213032.

5. Version Description

Version number	Summary of Revision Content	date
V1.0	Create	2024-3-11

CHANGZHOU FULLING MOTOR CO., LTD

Address: No. 69 Kunlun Road, Xinbei District, Changzhou City, Jiangsu Province

Postal Code: 213032

Phone:+86-519-85132957

Fax:+86-519-85132956

Email: info@fullingmotor.com

